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Abstrak – The adoption of Internet of Things (IoT) technologies in 
medical devices has greatly enhanced healthcare capabilities. This 
enables continuous patient monitoring, real-time diagnostics, and 
remote care. However, this connectivity also introduces significant 
cybersecurity threats that can compromise patient safety and system 
integrity. This paper presents a machine learning-based framework 
for detecting threats in IoT-enabled medical devices. This study 
utilizing the WUSTL-EHMS-2020 dataset that taking a collection of 
network traffic from real-world healthcare IoT systems. A 
comparative evaluation of multiple classifiers was conducted to 
assess detection effectiveness and computational efficiency. In terms 
of accuracy value, the Decision Tree (DT) achieves highest value of 
0.97. The Random Forest (RF) model demonstrated more optimum 
performance across metrics with accuracy at 0.94, precision of 0.95, 
recall of 0.56, and F1-score of 0.70. Meanwhile, XGBoost (XGB) 
achieved the highest Area Under the Curve (AUC) score at 0.95, 
indicating strong overall classification performance. Conversely, 
Gaussian Naive Bayes (GNB) exhibited the weakest results, with an 
accuracy of 0.86, F1-score of 0.46, and the lowest AUC score of 
0.73. Notably, K-Nearest Neighbors (KNN) achieved the fastest 
training time of just 0.001 seconds, offering a preferable option for 
deployment in time-sensitive environments. These results highlight 
the trade-offs between accuracy, speed, and robustness in machine 
learning-based intrusion detection systems. This study underscores 
the potential of intelligent threat detection models in strengthening 
the security of modern medical IoT infrastructures, all while 
balancing computational constraints. 
 
Kata Kunci – Healthcare IoT, machine learning, 
cybersecurity, threat  detection 

I. INTRODUCTION 

The rapid adoption of Internet of Things (IoT) technology in 
the healthcare systems has enabled the rise of smart medical 
ecosystem. These trends lead to development of devices that 
capable to perform real-time monitoring, automated 
diagnostics, and remote treatment. These IoT-enabled 
devices, including wearable health trackers, infusion pumps, 
and implantable sensors have significantly improved the 
quality of level of healthcare provision [1], [2]. However, the 
increased interconnectivity and reliance on networked 
communication expose these systems to a wide array of 
cybersecurity threats. 
Medical IoT devices often operate under resource constraints, 
transmit sensitive data, and are frequently deployed in open or 
semi-controlled environments. This is making them an 
attractive target for attackers [3]. Cyber incidents involving 
these devices can result in unauthorized access, data leakage, 
tampering with medical records. Furthermore, it can disrupt of 
critical treatment, in which poses direct risks to patient safety 
[4], [5]. Conventional security approaches, such as firewalls 
and static signature-based intrusion detection systems, are 

inadequate in dealing with the dynamic and evolving nature 
of attacks in healthcare-focused IoT infrastructures [6]. 
Therefore, recent research has turned to machine learning 
(ML) as a promising approach for enhancing threat detection 
capabilities in IoT health-based systems [7]. ML-based 
intrusion detection systems (IDS) can learn patterns of normal 
and abnormal behavior from data. This allows models to 
identify both known and novel threats with minimal human 
intervention. These systems offer adaptability, scalability, and 
potential for real-time operation. As such, it makes them well-
suited for deployment in heterogeneous and bandwidth-
limited medical IoT environments [8], [9]. 
This study investigates the use of supervised ML techniques 
for detecting threats in IoT-enabled medical devices. Utilizing 
the WUSTL-EHMS-2020 dataset, we explore the effective-
ness of multiple classification algorithms. The goal is to 
assess their feasibility for real-time intrusion detection under 
the computational and operational constraints. A typical 
scenario found in the medical device ecosystems. 
The remainder of the paper is structured as follows: Section 2 
reviews recent related work, Section 3 outlines the dataset and 
methodology, Section 4 presents the experimental setup and 
evaluation criteria, Section 5 discusses the findings and its 
implications, and Section 6 concludes the paper with 
suggestions for future research. 

II. RELATED WORK 

The integration of Internet of Medical Things (IoMT) devices 
has significantly enhanced the quality of mediacl care. 
However, it has also introduced substantial cybersecurity 
challenges. Machine learning (ML) techniques have emerged 
as effective tools for detecting and mitigating threats in these 
contexts. 
Studies have explored ML-based intrusion detection systems 
(IDS) tailored for IoMT. For instance, a comprehensive 
review by Kikissagbe and Adda [10] examined various ML 
methods, including supervised and unsupervised approaches, 
highlighting their effectiveness in identifying anomalies in 
IoMT networks. Similarly, Alalhareth and Hong [11] 
proposed a hybrid ensemble model for intrusion detection, 
demonstrating improved performance in handling IoMT 
security challenges through ensemble IDS. 
Anomaly detection is one of the key methods used to identify 
potential threats in IoMT systems. Chatterjee et al. [12] 
reviewed a variety of anomaly detection methods, 
emphasizing the importance of adapting algorithms to the 
specific characteristics of IoMT networks. These methods 
include clustering-based techniques, autoencoders, and 
decision trees, which are particularly useful for detecting 
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unusual patterns in healthcare data. Al Shahrani et al. [13] 
propose an optimized hashing algorithm with digital 
certificates to enhance the security of IoT-based healthcare 
systems. 
While deep learning has become increasingly prominent in 
cybersecurity, traditional machine learning methods still play 
a significant role in IoMT security. For instance, to identify 
and distinguish attack attempts, Kumar et al. [14] proposed a 
hybrid deep learning model that embedded ensamble learning 
with their proposed One-Dimensional Convolution Long 
Short-Term Memory (1D-CLSTM) Neural network. Their 
results shows that the accuracy of the model can achieve 
100% accuracy value by using WUSTL-EHMS-2020 dataset. 
Several works have focused on ensuring the security and 
privacy of IoMT systems. ElSayed et al. [15] proposed a zero-
trust architecture for healthcare IoT networks. It aims to 
enhance security without relying on trust between devices. 
This model utilizes machine learning to continuously monitor 
and adjust security protocols based on real-time network 
traffic analysis. Additionally, Al-Juboori and Jimoh [16] 
highlighted the vulnerabilities in medical devices, such as 
pacemakers. They suggested a ML-driven security 
mechanisms to mitigate attacks like data injection and 
physical tampering. 
The IoMT landscape poses unique cybersecurity challenges 
due to the diversity of devices. Moreover, this challanges 
need to be addressed carefully as new threats keep emerging 
and exploit system weaknesses [17].  Gelenbe et al. [18] 
addressed the challenges of maintaining security in 
heterogeneous IoT-based health systems. They proposed a 
self-adaptive ML approach to detect and mitigate attacks 
across different device types. Their work emphasizes the need 
for fully online and collaborative learning-based AI to 
improve security in health systems. 
 

III. METHODOLOGY 

In this study, we employ six machine learning models: 
Stochastic Gradient Descent (SGD), Random Forest (RF), 
Decision Tree (DT), Gaussian Naive Bayes (GNB), XGBoost 
(XGB), and K-Nearest Neighbors (KNN). These algorithms 
are utilized to detect intrusions in IoT-enabled medical 
devices using the WUSTL-EHMS-2020 dataset.  
Figure 1 shows the proposed experiment conducted in this 
study. Due to the limited size of the dataset, no feature 
selection techniques were applied, as the dataset did not 
contain a sufficient number of features to justify the need for 
dimensionality reduction.  
Each model was trained and evaluated based on its ability to 
classify network traffic. The model performances measured 
using key metrics such as training score, accuracy, precision, 
recall, F1-score, training time, and Area Under the Curve 
(AUC). The goal of the methodology is to assess the 
effectiveness of these diverse models to accurately detect 
security threats while balancing computational efficiency and 
detection robustness. 
The proposed experiment begins with the WUSTL-EHMS-
2020 dataset, which contains labeled network traffic data 
from IoT-enabled medical devices. The first step in the 
process is data cleaning, where any incomplete and 
inconsistent entries are identified and removed. This is done 
to ensure the quality and integrity of the dataset. This stage 
includes handling missing values, correcting any formatting 

issues, and ensuring that the data is suitable for following 
analysis workflow.  

A. Proposed Method 

 

Figure 1. Proposed Experiment 
 
Once the data is cleaned, the next critical step is data 
normalization. In this experiment, we use StandardScaler, a 
standard scaling technique to normalize the dataset. This step 
ensures that the features have zero mean and unit variance. It 
helps to standardize the range of values across different 
features, thus preventing any single feature from dispropor-
tionately influencing the performance of the ML models. 
Following the data preprocessing stages, we proceed with the 
classification workflow, where six different ML models are 
trained and evaluated. Each model is trained on 80% of the 
training set and tested on the remaining 20% of the testing set. 
The models are assessed using key performance metrics, 
including accuracy, precision, recall, F1-score, and area under 
the curve (AUC), to evaluate their ability to correctly classify 
network traffic as either normal or attack traffics.  
The final step involves performance evaluation, where the 
results from each model are compared to determine the most 
effective algorithm for intrusion detection in IoT-enabled 
medical environments.  

B. WUSTL-EHMS-2020 Dataset 

The WUSTL-EHMS-2020 dataset is a collection of network 
traffic data specifically designed for evaluating IDS in 
healthcare environments. Collected from a real-world 
healthcare infrastructure, the dataset contains both normal and 
malicious network traffic (see Figure 2). This makes it 
suitable for training and testing machine learning models 
aimed at detecting anomalies and security breaches. The 
dataset provides a valuable resource for evaluating how well 
IDS algorithms can identify threats in complex, time-sensitive 
environments, such as medical networks, particularly where 
data privacy and patient safety are important. 
One of the key characteristics of the WUSTL-EHMS-2020 
dataset is its diversity and real-world relevance. The data 
captures a wide range of activities that occur in healthcare IoT 
environments. This includes normal interactions between 
medical devices and the network, as well as potential 
malicious activities such as unauthorized access, denial-of-
service (DoS) attacks, and data exfiltration.  
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Figure 2. WUSTL EHMS Dataset Testbed [19] 

This dataset is labeled with both benign and attack traffic, as 
can be seen in Figure 3. Label 0 for benign traffic, while label 
1 is for attack attempts. This allowing seamless classfying and 
detection methods for the supervised training of ML models. 
This label enables a thorough evaluation of IDS performance. 
In particular in distinguishing between benign network 
behavior and malicious activities that could compromise the 
integrity of medical devices and patient data. 
 

 
Figure 3. Comparison Between Normal and Attack Attempts 

Despite its real-world origins, the WUSTL-EHMS-2020 
dataset comes with some limitations. The most weaknesses of 
this dataset is its relatively small size compared to other 
benchmark datasets used in the healthcare cybersecurity 
domain. Tabel 1 outlines the statistical information of the 
dataset.  
 

Tabel  1. Dataset Description [19] 

Measurement Value 
Dataset size 4.4 MB 
Number of normal samples 14,272 (87.5%)
Number of attack samples 2,046 (12.5%)
Total number of samples 16,318 

 
Due to this size limitation, it may not provide the same 
diversity and variety of attack types or network behaviors 
found in larger datasets. However, it remains a valuable tool 
for studying the efficacy of ML-based detection methods in 
healthcare contexts. In particular where the trade-off between 
computational efficiency and detection accuracy is critical. 
The dataset's focus on medical IoT systems makes it 
especially useful for research aimed at improving the security 
posture of healthcare environments. This is to ensure the safe 

operation of medical devices and protecting patient data from 
cyber threats. 

IV. EXPERIMENTAL ENVIRONMENT 

The experiments conducted in this study utilized the WUSTL-
EHMS-2020 dataset. This dataset consists of a labeled 
collection of network traffic data derived from real-world 
healthcare IoT systems. The dataset was divided into training 
and testing sets with an 80:20 ratio, where 80% of the data 
was used for training the machine learning models and the 
remaining 20% was allocated for testing. The reason for this 
approach is to provide large enough training data so that the 
models can learn better. 
The primary programming language employed for the 
implementation of the models is Python. This programming 
language is widely used in data analysis and having lots of 
machine learning libraries to work with. For data 
manipulation and preprocessing, Pandas was used, while 
NumPy facilitated numerical operations. The machine 
learning models were developed and evaluated using scikit-
learn. This library is a comprehensive package that provides 
tools for model selection, training, and evaluation. For data 
visualization, matplotlib and seaborn were utilized to generate 
various plots and graphs that helped in analyzing and 
interpreting the results. 
The experiments were run on a high-performance desktop 
system equipped with an Intel Core i5 13500 processor. The 
system had 32 GB of DDR5 RAM. This guarantees seamless 
operation of large datasets and the ability to execute multiple 
processes simultaneously without performance degradation. 
Data storage and access were managed by an 1 TB NVMe 
drive. This device provides fast read and write speeds that 
helped facilitate efficient data handling.  
Additionally, an NVIDIA GTX 3060 graphics card was 
included in the system. This GPU offers graphical 
acceleration for certain ML workflow. The operating system 
used was Windows 11. It provides a stable and compatible 
environment for running the necessary software and libraries. 
This robust experimental setup ensured the models could be 
trained and evaluated efficiently, providing accurate and 
reliable performance metrics for ML models comparison. 

V. RESULTS AND DISCUSSION 

The results from the evaluation of several machine learning 
models in the context of intrusion detection systems (IDS) for 
IoT-enabled medical devices provide valuable insights into 
their performance characteristics. Table 2 provides 
comparison of performance matrics among ML classifiers. 
Among the models tested, the DT stands out with the highest 
accuracy percentage as 0.97. The DT model also records 
recall value of 0.89. This indicates its ability to identify a 
large proportion of true positives cases. This functionality is 
essential in threat detection scenarios where missing attacks 
can cause severe damages.  
However, despite its strong recall, the DT model’s perfect 
training score (1.00) suggests a potential issue of overfitting. 
This poor generalization happens when model learns the 
training data too well which including noise and outliers. As 
consequence, although the training score appears perfect, its 
performance to generalize the testing data might be decreased. 
In the end, this may limit its model’s generalizability to 
unseen data.  
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Table 2. Comparison Results Among ML Classifiers 

Classifier Training 
Score 

Accuracy Precision Recall F1-Score

SGD 0.92 0.93 0.87 0.49 0.63
DT 1.00 0.97 0.86 0.89 0.87
RF 1.00 0.94 0.95 0.56 0.70
GNB 0.86 0.86 0.43 0.50 0.46
XGB 0.94 0.94 0.97 0.56 0.71
KNN 0.96 0.94 0.82 0.68 0.74
 
In contrast, the RF model, while achieving a high accuracy of 
0.94 and precision of 0.95, suffers from a lower recall (0.56). 
This indicates that it may fail to detect a significant portion of 
relevant attacks to the system. In the same way, XGB 
algorithm, which demonstrates an accuracy of 0.94 and 
precision of 0.97, also exhibits a relatively low recall (0.56), 
meaning that it perform well in correctly identifying true 
negatives cases but may miss some true positives. These 
findings suggest that XGB and RF are suitable for 
applications where precision is prioritized, but they may not 
be ideal for contexts when a system requires to detect of every 
potential threat. 
On the other hand, SGD model achieves 0.93 accuracy but 
exhibits a low recall of 0.49, highlighting its deficiency to 
capture many true positive instances despite overall accuracy. 
The F1-score of 0.63 further suggests that SGD unable to 
provide a balance performnace between precision and recall.  
KNN model, although achieving a moderate recall of 0.68 and 
F1-score of 0.74, giving potential in terms of computational 
efficiency. It has the fastest training time of just 0.001 
seconds (see Table 3), making it highly suitable for 
applications that demand a real-time and low-latency 
applications.  
However, its moderate performance in terms of recall and 
precision implies that it might miss a significant amount of 
attacks. This limitation might be critical in environments, 
such as medical device security. 
 

Table 3. Training Score Comparison for All ML Models 

Classifier Training 
Score 

SGD 0.059 
DT 0.241 
RF 4.338 

GNB 0.011 
XGB 9.542 
KNN 0.001 

 
Table 3 outlines the training score recorded for all ML 
classifiers. In terms of computational efficiency, KNN and 
GNB are the fastest among ot  her ML algorithm used in this 
study. The KNN being especially outstanding for its low 
training time. GNB model, despite its low computational cost, 
performs poorly across all metrics, with an accuracy of 0.86, 
precision of 0.43, and F1-score of 0.46, making it unsuitable 
for use in this healthcare context.  
The longer training times is recorded for XGB (9.542 
seconds) and RF (4.338 seconds). This  is indicating a 
disadvantage in healthcare domain where  time is a sensitive 
constraint. Although their overall performance in terms of 
accuracy and precision may justify their application in less 
time-critical setting. 

The comparative evaluation of these models reveals 
significant trade-offs between accuracy, recall, precision, and 
computational efficiency. All of which are important aspects 
when selecting a ML-based IDS  in IoT-enabled medical 
devices.  
The DT model, with its high recall value, is an excellent 
candidate for scenarios where the primary goal is to maximize 
the detection of threats, even at the expense of precision. This 
characteristic is particularly important in healthcare systems 
where undetected security threats could have severe 
consequences. However, its high training score and potential 
overfitting suggest that its performance may degrade when 
exposed to new, unseen data, which need for urgent and 
careful consideration of model regularization techniques to 
avoid overfitting.  
On the other hand, the RF model, which provides an optimum 
performance in between accuracy and precision, might be 
more suitable for environments where the cost of false 
positives is higher than that of false negatives. The relatively 
lower recall could be mitigated by implementing an ensemble 
approach or integrating it with other models to increase 
sensitivity. 
The XGB offers a powerful option for security systems with 
its exceptional precision and moderate recall. This is 
particularly relevant to a scenario where the cost of false 
positives is particularly high. In other words, the aim is to  
detect of rather well-known type of attacks rather than 
capturing all possible threats.  
Nonetheless, its longer training time suggests that it may not 
be the best option for real-time intrusion detection in critical 
systems, such as health care domain. For environments where 
training time is a critical constraint, K-NN appears as a 
prospective alternative. In spite of its average recall and 
precision value, its ability to train data almost without delay 
(0.001 seconds) makes it an attractive choice for time-
sensitive applications. Altough it could miss certain attacks 
that might otherwise be detected by more robust models like 
DT or RF. 
Another important consideration is the computational cost 
associated with each model. While KNN and GNB provide 
the benefit of low training times, the trade-off is clear in terms 
of model performances, with GNB particularly under-
performing in all of the evaluation metrics.  
In scenarios with system having fewer limitations on 
computational resources, XGB and RF models still provide 
excellent performance, albeit at a higher computational cost. 
The longer training times of these models must be weighed 
against their higher accuracy and precision, which might be 
acceptable in environments where processing time is not 
demanding. 
However, in real-time systems, where immediate action is 
needed, KNN provides an optimal balance between speed and 
reasonable detection capabilities. While K-NN may not record 
the optimum performance across all evaluation metrics, this 
model can be selected when dealing with rapid detection is 
essential. This can be useful as first tier of IDS system where 
fast respon is prefered than the careful attacks detection.  
Figure 3 shows the ROC AUC curve from XGB classifier. 
This model achieves an impressive AUC score of 0.95, which 
indicates its outstanding ability to correctly classify both the 
positive and negative cases in IoT-enabled medical devices.  
This excellent performance can be attributed to XGBoost’s 
use of gradient boosting, which sequentially refines weak 
learners to builds a robust and high-performance model. The 
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model’s ability to handle complex relationships in the data 
and its resilience to overfitting contribute to its superior 
performance, particularly in the context of high-dimensional 
datasets like those found in the intrusion detection tasks. 
 

Figure 3. ROC AUC XGB Model 
 
The high AUC score also highlights the model's versatility in 
dealing with imbalanced datasets. This is a common challenge 
in IDS in which dataset mimics the situation in network 
environment. In the real-world situation, the number of attack 
attempts is significantly lower than the normal traffic. XGB's 
capacity to assign higher importance to misclassified samples 
allows it to effectively focus on detecting minority class 
instances. This capability is often critical in security 
applications. This makes it particularly valuable in real-world 
IoT security scenarios where detecting rare but critical 
anomalies, such as cyber-attacks, is essential. In short, the 
high AUC score of XGB demonstrates its suitability for 
security applications in IoT systems, where both detection 
accuracy and the ability to distinguish between subtle 
differences in data are essential. 
 

 
Figure 4. ROC AUC GNB Model 

In contrast, GNB model recorded a considerably lower AUC 
score of 0.73, as it shown in Figure 4. This indicates its 
weaker performance in distinguishing between the positive 
and negative classes. This figure suggests that GNB unable to 
effectively identify relevant threats in the dataset. This may 
lead to a higher probability of misclassifications. The lower 

AUC also indicates that the model may have difficulty in 
detecting anomalies. This is in particular in the case of 
complex and non-linear relationships that are common in 
network traffic data. GNB’s assumption of feature 
independence and its reliance on a simple probabilistic 
framework may limit its ability to capture hidden patterns in 
the data. As consequence, this explains its limited capability 
to perform well in this context. 
Furthermore, the lower AUC score for GNB emphasizes its 
limitations in handling imbalanced datasets. This is a situation 
where the positive class (i.e. threats or attacks) in the dataset 
is often underrepresented. Moreover, the model’s reliance on 
Gaussian distributions might not be sufficient to capture the 
true characteristics of real-world data. This might lead to poor 
classification performance, especially in the detection of rare 
but critical security events. As a result, while GNB is 
computationally efficient and easy to implement, its 
considerably low AUC score makes it less effective than more 
sophisticated models like XGB.  
To sum up, the choice of machine learning model for IoT-
enabled medical device security depends on the specific needs 
and constraints of the system. DT model is preferable for 
applications where high recall is important. The RF and XGB 
stand out in scenarios where high precision is essential. 
Meanwhile, K-NN model is best suited for real-time, low-
latency applications, despite its moderate performance in 
terms of recall and precision. The GNB model, given its poor 
overall performance, is not recommended for intrusion 
detection in IoMT environments.  

VI. CONCLUSION 

This study indicates the potential of machine learning-based 
models in detecting cybersecurity threats within IoT-
heathcare system. In terms of accuracy, the DT model 
outperforms other ML algorithms utlized in this experiment. 
Meanwhile, the XGBoost model offers the best overall 
classification performance. Despite their high accuracy, the 
RF model come with computational trade-offs. Their high 
accuracy percentage but require the slowest training time. 
For instance, the K-NN algorithm having the fastesth training 
time but as demonstrated by the faster training time of K-
Nearest Neighbors. These findings highlight the need for 
balancing detection accuracy, computational efficiency, and 
robustness when implementing intrusion detection systems in 
healthcare IoT environments, underscoring the importance of 
securing medical infrastructures without compromising 
performance. 
Additionally, the results emphasize the diverse nature of IoT 
medical device environments, where varying levels of threat 
detection and system efficiency must be considered based on 
specific application needs. Future work could explore the 
integration of hybrid models or real-time adaptation 
mechanisms to further enhance threat detection capabilities 
while addressing the computational constraints of medical IoT 
systems. 
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